Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋
times. The algorithm should run in linear time and in O(1) space.
Hint:
- How many majority elements could it possibly have?
跟出现超过一半的数差不多,出现超过1/3的数最多有2个,扫描一遍数组,分别计数数组中的元素,当出现3个不同的元素时,把这3个元素都抛弃掉,如果有符合要求的数,那么它一定在最后剩下的数中,再分别判断一下剩下的数就能得到答案。
1 class Solution { 2 public: 3 vector majorityElement(vector & nums) { 4 int k = 3; 5 vector val(k), cnt(k, 0); 6 for (int i = 0; i < nums.size(); ++i) { 7 bool flag = true; 8 for (int j = 0; j < k; ++j) { 9 if (val[j] == nums[i] && cnt[j] > 0) {10 val[j] = nums[i];11 ++cnt[j];12 flag = false;13 break;14 }15 }16 if (flag) {17 for (int j = 0; j < k; ++j) {18 if (cnt[j] == 0) {19 val[j] = nums[i];20 ++cnt[j];21 break;22 }23 }24 }25 if (cnt[k - 1] == 1) {26 for (int kk = 0; kk < k; ++kk) {27 --cnt[kk];28 }29 }30 }31 vector res;32 for (int i = 0; i < k; ++i) if (cnt[i] > 0) {33 int c = 0;34 for (auto n : nums) if (val[i] == n) ++c;35 if (c > nums.size() / k) res.push_back(val[i]);36 }37 return res;38 }39 };